1. $635+87,777=$ \qquad (nearest hundred)
A. 88,000
B. 88,400
C. 88,500
D. 88,300
E. 90,000
2. $30.06-17.88=$
A. 12.18
B. 13.18
C. 13.82
D. 12.82
E. 12.94
3. $6 \frac{1}{3} \times \frac{18}{19}=$ \qquad
A. 1
B. $6 \frac{6}{19}$
C. $3 \frac{2}{3}$
D. 6
E. $5 \frac{6}{19}$
4. $20 \frac{1}{4} \div 4 \frac{1}{2}=$ \qquad (decimal)
A. 4.5
B. 4.75
C. 4.25
D. 4.125
E. 4.375
5. 340 milligrams $=$ \qquad dekagrams
A. $3,400,000$
B. 34
C. 34,000
D. 3.4
E. 0.034
6. Simplify: $\quad \frac{1}{5}(20 a-25)+\frac{2}{3}(9 a-12)$
A. $16 a-9$
B. $16 a-13$
C. $10 a-13$
D. $7 a-13$
E. $10 a-27$
7. Troy starting a movie at $7: 20 \mathrm{pm}$. If the movie lasts 2.2 hours, at what time will the movie end?
A. 9:42 pm
B. $9: 32 \mathrm{pm}$
C. 9:40 pm
D. $9: 22 \mathrm{pm}$
E. 9:52 pm
8. Using the picture below, if $m \angle 2=112^{\circ}$, then what is the sum of angles 4,6 , and 7 ?

A. 248°
B. 316°
C. 268°
D. 292°
E. 224°
9. 24 is 16% of what number?
A. 384
B. 184
C. 150
D. 174
E. 166
10. What is the median of the set of numbers $19,3,3,4,3,26,73,25,55,32,19,38,76,72,4,29,48$, and 17 ?
A. 25
B. 26
C. 26.5
D. 27
E. 25.5
11. What is the sum of the interior angles of a regular heptagon?
A. 900°
B. 720°
C. $1,080^{\circ}$
D. $1,260^{\circ}$
E. $1,540^{\circ}$
12. $54^{2}=$ \qquad
A. 2,916
B. 108
C. 2,706
D. 3,136
E. 2,336
13. What is the area of a square with a diagonal of 16 inches?
A. 256 in 2
B. $512 \mathrm{in}^{2}$
C. $128 \mathrm{in}^{2}$
D. $64 \mathrm{in}^{2}$
E. 96 in 2
14. What is the unit rate of buying 24 apples for $\$ 34.80$?
A. $\$ 1.25$ per apple
B. $\$ 1.35$ per apple
C. $\$ 0.95$ per apple
D. $\$ 1.45$ per apple
E. $\$ 1.65$ per apple
15. If $\pi=3$, what is the diameter of a circle with an area of 192 units 2 ?
A. 12 units
B. 16 units
C. 32 units
D. 8 units
E. 24 units
16. Use the examples in the picture below to find the value of m.

A. 484
B. 117
C. 250
D. 178
E. 234
17. $\mathrm{XII}+\mathrm{CDIX}+\mathrm{LXVII}=$ \qquad (Arabic number)
A. 584
B. 483
C. 512
D. 496
E. 488
18. What is the LCM of the numbers 24,30 , and 32 ?
A. 640
B. 30
C. 240
D. 960
E. 480
19. 19 quarters +28 dimes +37 nickels +46 pennies $=$ \qquad
A. $\$ 9.44$
B. $\$ 9.28$
C. \$9.64
D. $\$ 9.86$
E. \$9.48
20. If $5 b-17=103$, then what is the value of b^{2} ?
A. 576
B. 289
C. 676
D. 524
E. 784
21. Which expression matches "twice a number increased by negative eight"?
A. $2(n+(-8))$
B. $2 n-16$
C. $2(n-8)$
D. $2(n+8)$
E. $2 n+(-8)$
22. If five bottles cost $\$ 32.40$, how much do nine bottles cost?
A. $\$ 77.76$
B. $\$ 71.28$
C. $\$ 58.32$
D. $\$ 51.84$
E. $\$ 45.36$
23. If $44,100=2^{a} \cdot 3^{b} \cdot 5^{c} \cdot 7^{d}$, then what is the value of $a^{b}+b^{c}$?
A. 13
B. 8
C. 4
D. 18
E. 2
24. Ellie drew an angle measuring 48°. What is the measure of the supplement to the complement of Ellie's angle?
A. 42°
B. 142°
C. 132°
D. 138°
E. 148°
25. What is the sum of the next three terms of the sequence $-97,-88,-79,-70, \ldots$?
A. -156
B. -264
C. -210
D. -192
E. -165
26. What is the rate of change of the line that produces the values in the table below?

x	2	6	10	12
y	12	50	88	107

A. 9.5
B. 19.5
C. 11.5
D. 13.5
E. 12.5
27. $35,000,000-17,000,000=$ \qquad (scientific notation)
A. 1.8×10^{-7}
B. 1.8×10^{-6}
C. 18×10^{7}
D. 1.8×10^{7}
E. 1.8×10^{6}
28. $134_{7}=$ \qquad (base 10)
A. 17
B. 67
C. 64
D. 84
E. 74
29. Let U be a universal set and A and B be subsets of U defined as shown. How many elements are in $A^{\prime} \cup B$? $U=\{10,12,14,16,18,20,22,24\}$
$A=\{$ multiples of 4$\} \quad B=\{$ multiples of 3$\}$
A. $\{10,14,18,22\}$
B. $\{12,18,24\}$
C. $\{10,12,14,18,22,24\}$
D. $\{\varnothing\}$
E. $\{10,12,14,16\}$
30. Which of the following is equivalent to $8 x-2 y=-32$?
A. $y=-4 x+16$
B. $y=4 x+16$
C. $y=4 x-16$
D. $y=\frac{1}{4} x+16$
E. $y=-\frac{1}{4} x+16$
31. Using a standard deck of cards, what is the probability of drawing a three on the first draw, and with replacement, drawing a red card on the second draw?
A. $\frac{3}{26}$
B. $\frac{25}{663}$
C. $\frac{1}{13}$
D. $\frac{1}{26}$
E. $\frac{2}{13}$
32. What is the x-intercept of the graph of the linear equation $6 y=54-3 x$?
A. 18
B. $-1 / 2$
C. 9
D. -2
E. 2
33. Jordan is buying a new pair of sandals for $\$ 19.00$ and a new drinking bottle for $\$ 14.00$. If the tax rate is 7%, what will the total bill be Jordan must pay?
A. $\$ 34.91$
B. $\$ 24.71$
C. $\$ 35.31$
D. $\$ 35.61$
E. $\$ 35.91$
34. $\overline{A B}$ has endpoints $A(-14,18)$ and $B(-12,-2)$. If point C is the midpoint of $\overline{A B}$, what is the sum of the coordinates of C ?
A. 4
B. -5
C. -10
D. -8
E. 2
35. How many permutations can be formed of 12 objects taken 2 at a time?
A. 132
B. 66
C. 144
D. 24
E. 96
36. What is the mean absolute deviation of the set of numbers $42,56,81,91$, and 70 ?
A. 16.4
B. 16.6
C. 14.8
D. 15.2
E. 15.4
37. Factor completely:

$$
4 x^{2}+24 x+36
$$

A. $(4 x+12)(x+3)$
B. $4(x+3)^{2}$
C. $4(x-6)(x+6)$
D. $2(2 x+6)(x+3)$
E. $(2 x+3)^{2}$
38. If $h(x)=27-x^{2}$, then what is the value of $h(-6)$?
A. 21
B. -9
C. 63
D. 15
E. 39
39. Which of the following is a quadratic equation?
I. $y=4 x^{2}$
II. $y=2(0.3)^{x}$
III. $y=(x-2)(x+4)$
IV. $y=3 x-6$
V. $y=(x-1)^{2}+3$
A. I only
B. II, III, and IV only
C. I and V only
D. II and IV only
E. I, III, and V only
40. If $\frac{\frac{4}{6}+\frac{10}{12}+\frac{8}{16}}{4 \frac{1}{2}-1 \frac{1}{4}-1}=\frac{A}{B}$, then what is the value of $3 A-2 B$?
A. 9
B. 6
C. -1
D. -3
E. 4
41. Which of the following inequalities represents the graph below?

A. $3<x<8$
B. $3 \leq x \leq 8$
C. $3 \leq x<8$
D. $3<x \leq 8$
E. $-\infty<x<\infty$
42. The center of $\odot P$ has coordinates $(-4,-5)$. If point A with coordinates $(1,7)$ lies on $\odot P$, what is the measure of the diameter of $\odot P$?
A. 26 units
B. 24 units
C. 20 units
D. 32 units
E. 16 units
43. $\triangle A B C$ is a right isosceles triangle. The measure of the hypotenuse of $\triangle A B C$ is equal to the side length of square $W X Y Z$. If one leg of $\triangle A B C$ measures $16 \sqrt{2} \mathrm{~cm}$, what is the perimeter of the square?
A. $64 \sqrt{2} \mathrm{~cm}$
B. $256 \sqrt{2} \mathrm{~cm}$
C. 256 cm
D. 128 cm
E. $128 \sqrt{2} \mathrm{~cm}$
44. The graph of the quadratic equation $2 x^{2}+7=16 x$ if translated to the right four units and down six units. What are the coordinates of the vertex of the graph after the translation?
A. $(8,-19)$
B. $(0,-19)$
C. $(8,-31)$
D. $(4,-25)$
E. $(4,-19)$
45. If $\pi=3$, what is the volume of a sphere with a radius of 6 inches?
A. 216 inches 3
B. 864 inches 3
C. 432 inches 3
D. 1,296 inches ${ }^{3}$
E. 648 inches 3
46. Karla has 19 coins in her pocket consisting of dimes and nickels. If the total value of Karla’s coins is $\$ 1.35$, how many nickels does Karla have?
A. 13
B. 12
C. 11
D. 10
E. 9
47. What is the rate of decay for the exponential decay function $f(x)=0.55\left(\frac{3}{5}\right)^{x}$?
A. 55%
B. 45%
C. 60%
D. 160%
E. 40%
48. If $\log _{4} M=3$ and $\log _{3} 81=N$, then what is the value of $(M-N)^{2}$?
A. 6,084
B. 3,042
C. 2,025
D. 3,600
E. 1,600
49. Using the picture below, find $A C$.

A. $16 \sqrt{3} \mathrm{~cm}$
B. $8 \sqrt{3} \mathrm{~cm}$
C. $24 \sqrt{3} \mathrm{~cm}$
D. $32 \sqrt{3} \mathrm{~cm}$
E. 32 cm
50. $\left(\frac{18 a^{-5} b^{6}}{2 a^{-3} b}\right) \cdot\left(\frac{a^{-2} b}{a^{5} b^{3}}\right)^{-1} \div\left(\frac{3 a^{3} b^{2}}{a^{-2} b^{-3}}\right)^{2}=$ \qquad
A. $\frac{1}{a^{10} b^{10}}$
B. $\frac{3}{a^{7} b^{2}}$
C. $\frac{9}{a^{10} b^{10}}$
D. $\frac{3}{a^{5} b^{3}}$
E. $\frac{1}{a^{5} b^{3}}$

1. B	$18 . \mathrm{E}$	$35 . \mathrm{A}$
2. A	$19 . \mathrm{D}$	$36 . \mathrm{D}$
3. D	$20 . \mathrm{A}$	$37 . \mathrm{B}$
4. A	$21 . \mathrm{E}$	$38 . \mathrm{B}$
5. E	$22 . \mathrm{C}$	$39 . \mathrm{E}$
6. C	$23 . \mathrm{B}$	$40 . \mathrm{B}$
7. B	$24 . \mathrm{D}$	$41 . \mathrm{C}$
8. D	$25 . \mathrm{A}$	$42 . \mathrm{A}$
9. C	$26 . \mathrm{A}$	$43 . \mathrm{D}$
10. E	$27 . \mathrm{D}$	$44 . \mathrm{C}$
11. A	$28 . \mathrm{E}$	$45 . \mathrm{B}$
12. A	$29 . \mathrm{C}$	$46 . \mathrm{C}$
13. C	$30 . \mathrm{B}$	$47 . \mathrm{E}$
14.	$31 . \mathrm{D}$	$48 . \mathrm{D}$
15.	$32 . \mathrm{A}$	$49 . \mathrm{A}$
16.	$33 . \mathrm{C}$	$50 . \mathrm{E}$
17.	$34 . \mathrm{B}$	

11. The formula to find the total degrees of a polygon is $(n-2)(180)$, where n is equal to the number of sides of the polygon. Since a heptagon has 7 sides, it has $(7-2)(180)=5(180)=900^{\circ}$.
12. The formula for area of a square when given the diagonal is $A=\frac{d^{2}}{2}$. Therefore, the area of a square with a diagonal of 16 inches is equal to $\frac{16^{2}}{2}=\frac{256}{2}=128 \mathrm{in}^{2}$.
13. The probability of drawing a three on the first draw is $\frac{4}{52}=\frac{1}{13}$, and with replacement, the probability of drawing a red card on the second draw is $\frac{26}{52}=\frac{1}{2}$. Therefore, the probability of drawing a three on the first draw, and with replacement, drawing a red card on the second draw is $\frac{1}{13} \cdot \frac{1}{2}=\frac{1}{26}$.
14. $4 x^{2}+24 x+36=4\left(x^{2}+6 x+9\right)=4(x+3)(x+3)=4(x+3)^{2}$.
15. If $h(x)=27-x^{2}$, then $h(-6)=27-(-6)^{2}=27-36=-9$.
16. The distance formula between two point $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$. If point A with coordinates $(1,7)$ lies on $\odot P$, with center $(-4,-5)$, then the radius is $r=\sqrt{(1+4)^{2}+(7+5)^{2}}=$ $\sqrt{5^{2}+12^{2}}=\sqrt{25+144}=\sqrt{169}=13$. If the radius of $\odot P$ is 13 units, then the diameter is $13(2)=26$ units.
17. The formula for volume of a sphere is $V=\frac{4}{3} \pi r^{3}$. Therefore, if $\pi=3$, the volume of a sphere with a radius of 6 inches is equal to $\frac{4}{3}(3)\left(6^{3}\right)=\frac{4}{3}(3)(216)=4(216)=864 \mathrm{in}^{3}$.
18. An exponential decay function is in the form $y=a \cdot b^{x}$, where $0<b<1$, and $b=1-r$. a is the initial amount, b is the decay factor and r is the rate. In the function $f(x)=0.55\left(\frac{3}{5}\right)^{x}$, the rate of decay is equal to $\frac{3}{5}=1-r$. Subtracting both sides of the equation by 1 gives us $-\frac{2}{5}=-r$. Dividing both sides of the equation by -1 , and $r=\frac{2}{5}$. The rate of decay of the function is therefore, $\frac{2}{5}=0.4=40 \%$.
19. $\log _{x} y=z$ can be rewritten as $x^{z}=y$. This means, $\log _{4} M=3$ can be rewritten as $4^{3}=M$. Because $4^{3}=64$, then $M=64$. Also, $\log _{3} 81=N$ can be rewritten as $3^{N}=81$, and because $81=3^{4}, 3^{N}=3^{4}$ and $N=4$. Therefore, $(M-N)^{2}=(64-4)^{2}=60^{2}=3,600$.
20. $\left(\frac{18 a^{-5} b^{6}}{2 a^{-3} b}\right) \cdot\left(\frac{a^{-2} b}{a^{5} b^{3}}\right)^{-1} \div\left(\frac{3 a^{3} b^{2}}{a^{-2} b^{-3}}\right)^{2}=\left(\frac{9 b^{5}}{a^{2}}\right) \cdot\left(\frac{1}{a^{7} b^{2}}\right)^{-1} \div\left(\frac{3 a^{5} b^{5}}{1}\right)^{2}=\left(\frac{9 b^{5}}{a^{2}}\right) \cdot\left(\frac{a^{7} b^{2}}{1}\right) \div\left(\frac{9 a^{10} b^{10}}{1}\right)=$ $\left(\frac{9 b^{5}}{a^{2}}\right) \cdot\left(\frac{a^{7} b^{2}}{1}\right) \div\left(\frac{9 a^{10} b^{10}}{1}\right)=\left(\frac{9 b^{5}}{a^{2}}\right) \cdot\left(\frac{a^{7} b^{2}}{1}\right) \cdot\left(\frac{1}{9 a^{10} b^{10}}\right)=\frac{9 a^{7} b^{7}}{9 a^{12} b^{10}}=\frac{1}{a^{5} b^{3}}$.
